
© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 1

Introduction To The Unified Modelling Language (UML)

Behavioural

Models

Structural

Models

Use Case

Activity

State Machine

Sequence

Communication

Package

Class

Object

Deployment

Component

Additional

Specialised Models
Additional

Specialised Models

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 2

Course Context

Two specific areas of the UML have not been mentioned as they reflect more
detailed aspects.

• Object Constraint Language: OCL supplements UML by providing expressions
that have neither the ambiguities of natural language nor the inherent
difficulty of using complex mathematics. OCL is also a navigation language for
graph-based models.

• Model Driven Architecture: MDA is an approach to development that directly
connects models with their implementation in software. Essentially the
model becomes the specification for software construction, which is then
applied in specific deployment concepts by tools specialised for each
implementation environment.

If you are going to be undertaking significant amounts of modelling and use our
modelling tools (currently Rational Software Architect) extensively then you
should also look for more complete training, offered through classroom and
interactive on-line courses.

For more details on UML in general please follow this link

For more details on OCL please follow this link

For more details on MDA please follow this link

UML is the preferred notation for modelling
software rich business solutions.

This introduction provides a short overview of
UML and introduces you to the basic models.

Note that for all of these models there are
additional elements that reflect more complex
concepts. These have not been included in this
course.

The introduction provides:

• An understanding of UML and its model
types that enables you to read and
contribute to relevant models.

• Provides and certifies a minimum standard
of knowledge about modelling software rich
systems for all of our architects and
designers.

http://www.uml.org/
http://www.omg.org/spec/OCL/
http://www.omg.org/mda/

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 3

Section 1

Why use UML

1

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 4

Why modelling?

When we look to create new business solutions we are faced with the tasks of
understanding:

• The current state of our business environment

• The specific requirements for change

• How we translate those requirements into changes in our business
environment

To help us in this we develop models. Models are abstractions of something for
the purpose of understanding and generally represent specific points of view
and simplifications of the real world.

They enable us to focus on the essential elements and properties of a desired
solution by:

• Highlighting different viewpoints and views

• Identifying important structures and patterns

• Improving communication with various stakeholders

• Enabling early testing before full scale creation

• Reducing complexity for analysis and overall design

• Providing pre-defined concepts for optimising complex relationships when
needed

The Unified Modelling Language (UML) is the
preferred notation for modelling software rich
business solutions. As most business processes
are supported by ICT systems it has an
application for most areas of our business.

Modelling for business and software systems
was initially developed through the 1970s-
1990s as businesses began to use more
systematic methods of improving operation and
increasing automation of processes.

Modelling enabled a better understanding of
existing processes and systems and was
increasingly aligned to standard taxonomies
creating shared concepts and terms.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 5

Where does UML fit in?

Creating improved business solutions requires we understand
elements such as:

• Processes, people and roles
• Information & data
• Software systems and computing/network devices

UML was initially developed to support object oriented analysis
and design. This focused on improving the process of building
object oriented software. As the OOA&D approach developed it
has grown to take in process modelling, data modelling and
physical systems / network modelling, and to combine these with
an overall container framework of components, sub-systems,
systems and packages.

UML is now used as a notation for the modelling of software rich
business solutions.

Business Process
Modelling

Software Systems &
Information Modelling

Hardware Device
Modelling

Network
Modelling

Software & Data

Computing &
Network Devices

Network
Connections

Software & Physical
Service Modelling

Process & Procedures

Software & Physical
Services

ARIS / BPMN / UML
Notation

ER / DATA Modelling
UML

UML
(Partial)

UML
(Partial)

UML
(Partial)

Notation Modelling Type Target Artefact

Specific uses of UML:

• To model the services offered across the boundaries of our platforms we can create the platform service / interface diagrams (UML
package based component models)

• When developing models to support our software service development (all of the UML models)
• To reflect the deployment of software services on computing and network devices in networks (UML deployment models)
• As one of the notations for creating process models (UML activity diagrams) and information or data models (UML class and object

models)

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 6

An example of UML for software platform interactions

Below is a an example UML component model showing the platform component interfaces and flows involved in a change to the way we
manage product templates and billing information.

This diagram is produced as part of our high level design process to identify the platforms and services involved in a design.

Later in the course you will see the standard notation for a UML component diagram that matches this.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 7

Section 2

What is UML?

2

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 8

The basic properties of UML

UML was developed in the early 1990s to provide a consolidated standard industry
modelling language (from the pre-existing object, function, process and data
oriented modelling languages) and has since become the worldwide standard
managed by the Object Management Group (OMG).

• UML version 1.1 adopted by OMG and updated to 1.3, 1.4, 1.5 with minor
revisions and additions.

• UML version 2.0 was introduced in Oct 2004 to support Model-Driven
Architecture/Model-Driven Development 2.4 is the version released in 2011.

• Version UML 2.x refers to any of the version 2 minor versions.

It is intentionally development process independent and can be applied in the
context of different processes. However it has been developed in line with use
case driven, iterative, agile and incremental development processes. An example
of such a process is Unified Process (UP) and there are proprietary
implementations of the UP such as the Rational Unified Process (RUP).

UML is developed by the Object Management, please follow this link for more
details on the OMG and UML.

RUP is now owned and developed by IBM, please follow this link for more
details on RUP.

UML is a standardised visual modelling
language intended to be used for modelling
business process and their underlying elements
and the analysis, design, and implementation of
software-based systems.

UML can be applied to diverse business
domains (e.g., banking, finance, internet,
aerospace, healthcare, telecommunications,
etc.) and can be used with all major object and
component software development methods
and for various implementation platforms (e.g.,
J2EE, .NET).

http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www-01.ibm.com/software/awdtools/rup/
http://www-01.ibm.com/software/awdtools/rup/

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 9

The standard UML models

UML comprises a set of standard structural and
behavioural models (shown on this slide)
supplemented by some more specialised ones
such as:

• Composite structure
• Interaction overview
• Network architecture
• Timing
• Locality

The structural models represent the ”things” in
the problem space, how they are grouped, and
their relationships.

The behavioural models represent
actions/activities and flows in the problem
space, how they are connected and how they
are sequenced.

This course provides examples of the main
models (but does not cover the more
specialised ones).

Behavioural

Models

Structural

Models

Use Case

Activity

State Machine

Sequence

Communication

Package

Class

Object

Deployment

Component

Additional

Specialised Models
Additional

Specialised Models

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 10

When you use the models

The models can be used to capture three
different levels of information:

• Analysis (As Is and To Be)
• Design
• Implementation

All of the models can be used for analysing the
current or proposed situation and capturing
aspects of the design.

You should choose the models relevant to the
specific solution being reviewed, changed or
developed.

In a number of cases you will want to maintain
both analysis and design models as on-going
documentation.

You may also layer the analysis and design
models to reflect different levels of detail such
as an overall architecture view or a detailed
design view.

Analysis Design Implementation

Use Case

Sequence

Class

Object

Deployment

State Machine

Communication

Package

Component

Activity

Deployment

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 11

Section 3

The structural models

3

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 12

The structural models

The structural models represent the “things” of
concern in our business. They may be physical,
software or various collections of these.

The structural models enable us define these
structures and then organise then in the most
effective ways.

The following slides provide examples of each
of the models shown.

Behavioural

Models

Structural

Models

Use Case

Activity

State Machine

Sequence

Communication

Package

Class

Object

Deployment

Component

Additional

Specialised Models
Additional

Specialised Models

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 13

Class diagrams - the class

A class diagram enables us to identify and describe all of the entities
involved in a particular system of concern.

• A class diagram shows a number of classes and the relationships
between them.

• A class has attributes representing its state and methods
representing its behaviour.

The single class shown on this page provides an example of the
format for describing attributes and methods. An attribute has a
name and a data type; a method has name, an optional supplied
value, and an optional returned value.

custID : integer
custSurname : string
custFirstName : string
custTitle : string
dateOfBirth: date

Customer

+ createCustomer (string) : void
+ changeCustDetails (string) : void
+ doesCustExist (string) : boolean

attributes

methods

name

class

The basic notation for a complete class diagram is shown on the next page . It describes a number of classes and their association to each
other.

An association is notated to show the nature of the relationship. An association can show a number of different details. The diagram shows
the cardinality and it can additionally show directionality, constraints and aggregations when needed. If the association has attributes this
creates an association class to hold those attributes as shown.

An inheritance association is one that reflects a specialisation/ generalisation relationship. The attributes and behaviour of a super class
(the one at the head of the arrow) are inherited by the sub classes (the classes at the other end of the arrow) This means the sub classes
take on the attributes and behaviours of the super class and can add on additional ones of their own.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 14

Class diagrams - classes and associations

accountValue ; float
accountODLimit : float

Current Account

accountID: string
dateOpened: date
dateClosed : date

Account

+ setAccount (float) : void
+ setaccountODlLimit (float) void
+ payment (value) : void
+ withdrawal (value) : void
+ isAccount OD () : boolean

custID : integer
custSurname : string
custFirstName : string
custTitle : string
dateOfBirth: date

Customer

+ createCustomer (string) : void
+ changeCustDetails (string) : void
+ doesCustExist (string) : boolean

0..*1..*

dateAddedtoAccount : date
dateRemovedFromAccount : date

Customer Owns Account

+ openAccount (string) : void
+ closeAccount () : void

loanValue: float
loanOutstanding : float
loanPeriod: float

Loan Account

+ setLoan (float) : void
+ increaseLoan (float) : void
+ applyPayment (float) : void
+ getLoanBalance () : float

association

association class

cardinality

inheritance

class

+ addToAccount () : void
+ removeFromAccount () : void

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 15

Object diagrams

An object diagram is a special case of a class
diagram.

It shows a single instance of a class and its
specific relationships.

In the example we can see that an instance of a
customer record (for Joe) is at this point in time
connected to an instance of a savings account
for Joe and current account for Joe.

The more general model of a customer record
class and its connections to savings and loan
accounts would only show that it is possible for
Joe to have both accounts not that he actually
does.

An object diagram enables you to create
specific state scenarios to check that the more
general class model with cope with all of the
different real world instantiations it has to
address.

joe’s : CustomerRecord

joe’s : savingsAccount joe’s: currentAccount

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 16

Package diagrams

A package is used to organise and handle
complexity in large models.

It is generally used to hold other UML models
within a partition and provides the namespace
for that partition.

Packages are represented as named folders as
shown in the diagram and may be empty or
optionally show its members.

Packages tend to be used to group use cases or
classes.

There are different types of packages. The
packages shown represent “model packages”
and are denoted by the use of the

Other uses of packages are for more formal
namespace management using specific
associations representing; merge, import and
nesting.

ATM Owning Bank

Customers Bank

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 17

Component diagrams

Component diagrams are similar to package
diagrams in that they represent specific
namespaces of logical structures.

They display only the interfaces between
components and hide the elements within the
component.

The lollipop circle indicates that component
provides the interface.
The open semi circle indicates that a
component requires the interface.

Customer Details

Accounts
Management Customer

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 18

Deployment diagrams

Deployment diagrams show instances of
artefacts placed onto specific target
environments.

They are generally used to define software
placement on specific computing and network
devices.

Each node may contain other artefacts and
associations can be identified between nodes.

: <<Process & Presentation Server>>
 IBM P690 / AIX

JSP Pages

<< WebSphere Web
Container>>

Java
Classes

: <<Business Function Server>>
 IBM P690 / AIX

EJBs

<< WebSphere EJB
Container>>

Java
Classes

: <<Database Server>>
 IBM P690 / AIX

<< DB2>>

<< JDBC >>

<< JDBC >>

<< RMI / IIOP >>

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 19

Customisation of UML: stereotypes, profiles and tagged values

An important aspect of UML is that it can be
customized for specific purposes. There are three
important language features that support this:

• Stereotypes: labels or graphics added to the
standard diagram notation element to describe
the role that the element is playing in the
diagram.

• Tagged Values: allow you to add additional
information to UML models. They are
represented as notes added to structures within
UML such as profiles, components and classes.

• UML Profiles: a UML profile is simply a collection
of customizations that have been defined for a
particular problem/solution domain. Examples
include Service Oriented Architecture and Voice
Services. They can be presented as packages.

: <<Database Server>>
 IBM P690 / AIX

Voice Services Profile

Tag Item 1: ………………………………….
Tag Item 2: ………….………………………

Stereotypes

Tag

Profile

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 20

Section 4

The behavioural models

4

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 21

The behavioural models

The behavioural models represent the
“activities, events and flows”” of concern in our
business.

These may be in the world of business
processes or in the execution paths of software
or physical systems.

The behavioural models enable us define these
behaviours and then organise them in the most
effective ways.

The following slides provide examples of each
of the models shown.

Behavioural

Models

Structural

Models

Use Case

Activity

State Machine

Sequence

Communication

Package

Class

Object

Deployment

Component

Additional

Specialised Models
Additional

Specialised Models

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 22

Use case diagrams

A use case model shows the interactions
between a system and the external actors that
use that system across the system boundary.

An actor represents a role performed by an
external agent. That external agent could be a
person or another system.

Each use case (such as “make loan request” in
the diagram) is an atomic sequence of steps
that delivers a unit of value to the actor
performing the role.

A use case may also “include” the functionality
of another case; or it may “extend” the
functionality of a use case to which it refers.

loan
request

inform
customer

Loan
Salesperson

authorise
loan

Loan
Specialist

Loan
Manager

Customer

receive
reply

process
reply

approve
loan

pay
interest

credit
amount

<<includes>>

Message
Delivery

Loan System

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 23

Use case description

Each use case has a description in the form of a
set of structured clauses.

This format can be varied, the one shown is
about average for the format type and level of
complexity .

The aim of a use case is to clearly describe all of
the exchanges between the actors and the
system; and the state that the system will be
left in once the use case completes.

A use case should be written so that all
stakeholders can understand it minimising
“technical” jargon.

High level use cases are similar to the later
developed concept of user stories but tend to
have a more formal structure.

Use Case: Pay Interest
Description:

The due interest on all deposit accounts for the last month has been calculated and credited to
the accounts and a report produced showing the interest paid.

Actors:
Manager

Printer Queue

Assumptions:
None

Steps:

• The Manager starts the pay interest Use Case (on the 28th of each month)

• The pay interest job is submitted to the system

• For each deposit account held within the deposit account file, the interest due is calculated
and the credit amount Use Case is executed for each account that has interest due.
[Exception: - Deposit Account Value <= 0]

• When all of the accounts have been processed a report is created and stored in the system
showing the interest paid on each account and the total amount of interest paid; an e-mail is
sent to the to the Manager informing them to access and review the report; and the use case
terminates

Alternate Course:

None.

Exceptions:

[Deposit Account Value <= 0]

If a deposit account is found with a balance of zero or less then no interest is calculated, the
credit amount use case is not executed for that account, and the report entry for the account will
clearly highlight the account value.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 24

Use case description – quality and performance attributes

The use case description can be extended by
including a statement about the performance
and quality attributes.

The set of performance and quality attributes
should reflect the latest set requested as part of
our specify and plan process this can be as small
as 5 and as many as 30-40.

A sample set is shown on the slide.

Use Case Performance Attributes:

• The number of instances of each Actor:
There is one manager for each branch.

• The geographical distribution of the Actors / System Components:
The managers will be located in the branch along with the branch system upon which the
request for processing interest payments is input. The calculation and payments will be
processed on a central server system.

• The number of concurrent instances of the Use Case:
A branch may have 1 concurrent instance of the Use Case. The central system may have up to
500 concurrent requests from branches for processing interest payments. These will be
queued and processing sequentially

• The response time required for an individual instance of this Use Case:
The Use Case should be able to be executed overnight in the month end batch processing
window of 17.00 to 08.00. All of the branch runs together should be processed in a maximum
of 3 hours.

• The security requirements for this Use Case:
The Use Case should only be able to be executed by authorised Bank Employees performing
the role of a Manager.

• The reliability of this Use Case in its execution:
The Use Case should always execute reliably unless there are system infrastructure problems
from which the Use Case should be able to exit gracefully.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 25

Supplementing the use case with an interface prototype

While not a formal part of UML
there is often a need to produce a
model of the user interface to
improve the discussion about the
requirements and to also identify
and discuss all of the alternate and
failure paths.

In some cases initial discussions
about requirements should ignore
the physical interface issues and just
focus on the business events . In
others the user interface makes it
much easier to have discussions
about the business events (but be
careful not to allow the nature of
the interface to determine the
business events).

Loan LP1234 approval
Loan LP1237 approval
Loan LP1267 inform customer
Loan LP1289 process reply

Loan ID Activity

Loan LP1214 approving
Loan LP1238 informing

Loan ID Status Selected Date

Activities Allocated / Not Started Activities Started

Loan Specialist Activity Form

LP1214Proposed Loan ID

03/04/98

Current Status

$30,000Requested Amount

Approved Amount

Authorized AmountDate Activity Started

Date Loan Requested

Date Approved

Date Refused

Date Authorized

Date Customer Informed

Date Accepted

Date Rejected

Date Account Credited

approving

03/04/98

Note

Other Loans
Previous Requests
Credit Rating

Date

03/04/1998
03/04/1998
04/04/1998

Save Changes Approve Loan Reject Loan Customer Informed

Close Form

03/04/98
03/04/98

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 26

Supplementing the use case with scenarios using sequence diagrams

A scenario diagram is a specific type of
sequence diagram that describes the
interactions between an actor and a system
when a use case is run.

Each specific event is identified and the
exchange that occurs during the event.

Multiple scenarios may be modelled for the
“happy path”, “alternate paths” and “failure
paths”.

The one shown is the “happy path” for the
approve loan use case.

The scenario can be described by using the
defining sentences and / or the specific
operation names depending on the level of
detail required, the audience, and the need to
connect the logical operation to their specific
implementations.

Loan Specialist System

reqDisplayLoanSpecialistActivities

displayLoanSpecialistActivities

selectQueuedInstance

reDisplayLoanSpecialistActivities

selectProposedLoanInstanceToWorkOn

displayProposedLoanDetails

updateProposedLoanDetails

requestUpdateConfirmation

confirmUpdateOfProposedLoanDetails

requestApprovalConfirmation

approveLoan

confirmLoanApproval

The loan specialist requests to display the activities and

the system displays the allocated activities.

The loan specialist selects a queued loan and the

system marks the loan as selected for work.

The loan specialist requests a selected loan to work on

and the system displays the loan details.

The loan specialist changes the details and saves them.

The system requests confirmation of the changes.

The loan specialist confirms the changes and the

system records the changes.

The loan specialist approves the loan. The system

requests confirmation of the approval.

The loan specialist confirms the approval. The system

records the approval and if the loan is for an amount

greater than or equal to $10,000 it is offered to Loan

Managers for authorisation, if it is less than $10,000 it

is queued to a Loan Specialist to inform the customer

Approve Loan
Use Case

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 27

Activity diagrams

Activity diagrams are used to display a
sequence of activities from a start point to a
finish point.

Activity diagrams can used to model different
aspects of sequences including business
processes and software execution paths.

The example shown is of a business process
model for a loan request.

Activity diagrams can be partitioned and nested
and they can include swimlanes grouping
activities within role or organisation boundaries.

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 28

Activity diagrams

Activity diagrams are used to display a
sequence of activities from a start point to a
finish point.

Activity diagrams can used to model different
aspects of sequences including business
processes and software execution paths.

The example shown is of a business process
model for a loan request.

Activity diagrams can be partitioned and nested
and they can include swimlanes grouping
activities within role or organisation boundaries.

<<external>>
make loan

request

[loan
accepted]

[loan amount
<= 10,000]

[loan amount
> 10,000]

[loan not accepted]

[loan < = 10,000 approved]

[loan > 10,000 authorised]

<<queued>>
approve loan

<<queued>>
Inform

customer

<<offered>>
authorise loan

<<external>>
receive reply

<<queued>>
process reply

<<queued>>
open loan
account

This activity
is part of the

manage
account
business
process

[loan < = 10,000 not approved]

[loan > 10,000 not authorised]

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 29

Sequence diagrams

Sequence diagrams describe the
interactions between objects
triggered by a particular event. In
this case the request to open an
account.

A sequence diagram typically shows
a number of objects at the top of
the diagram with lifelines below to
show activity over time.

Events are shown invoking methods
on the objects.

A sequence diagram is very useful
for showing the order and flow of
execution between objects.

 : Teller

oAS : Open

AccountScreen

bAM : BankAccount
Manager

bAS : BankAccount

SystemSQLManager

cIEM : BranchEntity

Manager

bASSM : BankAccountSystem

Session

cEM : Customer
InfoEntityManager

a : Account

aEM : Account

EntityManager

bEM : Account
TypeEntityManager

1: openAccount ()

2: createAccount (Integer, Integer, Integer)
3: isCustomerValid (Integer)

9: isAccoutTypeValid (Integer)

6: isBranchValid (String)

20: displayOpenAccountResult (String, Account)

17: insertNewAccount (Account)

12: getNextAccountNumber (Integer)

10: accountTypeExist (Integer) 11: execute (String)

13: getNextAccountNumber (Integer) 14: execute (String)

16: setNewAccount (Integer, Integer, Integer, String)

18: insert (Account) 19: execute (String)

4: customerExist (Integer)

7: branchExist (String)

5: execute (String)

8: execute (String)

15: create ()

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 30

Communication diagrams

Communication diagrams (previously
called collaboration diagrams) present
the same information as sequence
diagrams but in different format.

They show the event flows between
objects in a more structural view
enabling the analyst or designer to
understand and shape the overall
architecture of collaborating objects.

 : Teller

oAS : OpenAccountScreen

bAM : BankAccountManager

bAS : BankAccountSystemSQLManager

cIEM : Branch
EntityManager

bASSM : BankAccount
SystemSession

bEM : AccountType
EntityManager

aEM : Account
EntityManager

a : Account

cEM : Customer
InfoEntityManager

1: openAccount ()

2: createAccount (Integer, Integer, Integer)

20: displayOpenAccountResult (String, Account)

3: isCustomerValid (Integer)
9: isAccoutTypeValid (Integer)

6: isBranchValid (String)
17: insertNewAccount (Account)

12: getNextAccountNumber (Integer)

16: setNewAccount (Integer, Integer, Integer, String)
15: create ()

7: branchExist (String)

10: accountTypeExist (Integer)
13: getNextAccountNumber (Integer)

18: insert (Account)

4: customerExist (Integer)

8: execute (String)
11: execute (String)
14: execute (String)

19: execute (String)

5: execute (String)

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 31

State machine diagrams

State machine diagrams show the states
of an object / class and the actions that
drive the transitions between those
states.

They are useful when you need to
explore the detail of a complex lifecycle
for an object / class.

requested

approved

do: inform

Customer

authorized

do: inform

customer

loan authorized / loan.amount is reset

/ loan.authorizedDate is set

refused

do: inform

customer

loan refused / loan.refusedDate is set

^Loan.setRefusedTimeStamp

waiting for customer

decision

exit: do process reply

accepted

do: open account

do: credit account

accepted

rejected

rejected

being approved

do: process small loan

do: process large loan

being authorizing

do: authorize large loan

[timer > 20 days]

other response

customer informed

^Loan.setCustomerInformedTimestamp

customer informed

other response

[loan < = 10,000]

[loan > 10,000]

customer informed / loan.acceptedDate is set

^Loan.setCustomerInformedTimestamp

start approval

 ̂Loan.setApprovalStartedTimestamp

 ̂Loan.setPeformerID

start authorization

^Loan.setAuthorizationStartedTimestamp

/ Loan.createRecord

customer informed

^Loan.setCustomerInformedTimestamp

State Machine

Diagram For the

Loan Class

loan refused / loan.refusedDate is set

^Loan.setRefusedTimeStamp

loan approved / loan.amount is set

^Loan.setApprovedTimestamp

© Enterprise Architecting / M.J. Anniss Ltd 2014 Slide 32

Behavioural Diagrams

The End

Behavioural

Models

Structural

Models

Use Case

Activity

State Machine

Sequence

Communication

Package

Class

Object

Deployment

Component

Additional

Specialised Models
Additional

Specialised Models

	Slide 1: Introduction To The Unified Modelling Language (UML)
	Slide 2: Course Context
	Slide 3: Section 1
	Slide 4: Why modelling?
	Slide 5: Where does UML fit in?
	Slide 6: An example of UML for software platform interactions
	Slide 7: Section 2
	Slide 8: The basic properties of UML
	Slide 9: The standard UML models
	Slide 10: When you use the models
	Slide 11: Section 3
	Slide 12: The structural models
	Slide 13: Class diagrams - the class
	Slide 14: Class diagrams - classes and associations
	Slide 15: Object diagrams
	Slide 16: Package diagrams
	Slide 17: Component diagrams
	Slide 18: Deployment diagrams
	Slide 19: Customisation of UML: stereotypes, profiles and tagged values
	Slide 20: Section 4
	Slide 21: The behavioural models
	Slide 22: Use case diagrams
	Slide 23: Use case description
	Slide 24: Use case description – quality and performance attributes
	Slide 25: Supplementing the use case with an interface prototype
	Slide 26: Supplementing the use case with scenarios using sequence diagrams
	Slide 27: Activity diagrams
	Slide 28: Activity diagrams
	Slide 29: Sequence diagrams
	Slide 30: Communication diagrams
	Slide 31: State machine diagrams
	Slide 32: The End

